首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41927篇
  免费   8696篇
  国内免费   9983篇
测绘学   4011篇
大气科学   8833篇
地球物理   7277篇
地质学   22282篇
海洋学   5257篇
天文学   3540篇
综合类   2901篇
自然地理   6505篇
  2024年   113篇
  2023年   577篇
  2022年   1485篇
  2021年   1770篇
  2020年   1658篇
  2019年   1881篇
  2018年   1560篇
  2017年   1754篇
  2016年   1823篇
  2015年   2047篇
  2014年   2615篇
  2013年   2647篇
  2012年   2793篇
  2011年   2857篇
  2010年   2447篇
  2009年   3007篇
  2008年   2889篇
  2007年   3106篇
  2006年   2936篇
  2005年   2798篇
  2004年   2414篇
  2003年   2235篇
  2002年   1886篇
  2001年   1726篇
  2000年   1671篇
  1999年   1481篇
  1998年   1301篇
  1997年   915篇
  1996年   765篇
  1995年   680篇
  1994年   645篇
  1993年   551篇
  1992年   374篇
  1991年   321篇
  1990年   218篇
  1989年   177篇
  1988年   149篇
  1987年   78篇
  1986年   48篇
  1985年   46篇
  1984年   27篇
  1983年   20篇
  1982年   19篇
  1981年   15篇
  1980年   14篇
  1979年   5篇
  1978年   17篇
  1977年   6篇
  1976年   5篇
  1954年   8篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
71.
为揭示活动陆缘深水褶皱冲断带的特征及成因,本文利用地震和区域地质资料的综合分析,系统阐述了文莱—沙巴盆地深水褶皱冲断带的构造变形特征,并结合盆地演化动力学特点,探讨其构造变形机制及其对深水区油气成藏的影响.研究结果表明,文莱—沙巴盆地深水褶皱冲断带具有"垂向分期、平面分段"的特点,垂向上,以中中新统底界面为界可划分为下部(始新世-早中新世)和上部(中中新世-现今)两套逆冲褶皱冲断体系,其中下部逆冲褶皱冲断带的形成与古南海的俯冲作用密切相关,上部逆冲褶皱冲断带是中中新世以来三角洲前缘重力滑动与苏禄海扩张造成的区域挤压应力远程效应共同作用的结果,且苏禄海扩张造成的远程挤压效应主控平面上南北段褶皱冲断带变形的差异性,导致北段褶皱变形强度大于南段,具有背斜褶皱数量多、褶皱间距离短、逆冲断层倾角陡的特点,南段反之;且晚上新世以来北段深水区地层缩短量大于陆架区伸展量,两者之差为2~6 km,而南段两者相当,仅受三角洲前缘重力滑动影响.整个褶皱冲断带发育断弯、断展、断滑褶皱等3种断层相关褶皱以及叠瓦扇和冲起构造2种逆冲构造组合,是多期NW向挤压应力作用下形成的大型逆冲推覆构造,以前展式向盆地扩展.此外,由于中中新世以来逆冲断层的持续活动,研究区深水褶皱冲断带发育众多构造圈闭,油气成藏条件优越,且南段优于北段,靠近陆坡的近端优于远端,可作为勘探部署重点.  相似文献   
72.
The study is based on the underground fluid observation data in Lijiang area, northwest Yunnan Province. The data include the water level and temperature in Dangxiao well and Jinjia well, and the ion measurements in Ganze spring. Combining with the data of regional hydrogeology, rainfall, well structures, and the geothermal gradient, we analyzed the variations of each measurement item before the Ludian MS6.5 earthquake on August 3, 2014 and discussed the possible mechanism for the abnormal variations. The water levels of both Dangxiao well and Jinjia well are influenced by local rainfall, but the former shows hysteresis according to rainy seasons and is the long trend influence; while the latter shows synchronization between high water level and rainy season, indicating good connection between well water and shallow aquifer. The recharge water for Dangxiao well is in relatively low temperature, and the temperature sensor is located at the major connecting section between the well water and the aquifer; the water temperature variation is mainly affected by the discharge status and variation of water level. The Jinjia well is always in static level, and the temperature sensor is below the major connecting section between the well water and aquifer, so the water temperature is affected little by water level variations and in smooth fluctuation. The recharge source for Ganze spring can generally increase the contents of calcium and magnesium ions, so does the conductivity. The water level data of Dangxiao well since 2012 are decomposed with wavelet technique. The results, excluding such high-frequency components as the noise and the semidiurnal and daily wave components influenced by earth tide, are further processed with difference method in order to eliminate the trend effect. The results show that the relative change of water level is enhanced and in relatively rapid increase before the Ludian MS6.5 earthquake; the corresponding water temperature values are high. The tendency of water level in Jinjia well displays descending, while the corresponding water temperature shows ascending. The content of calcium ion, magnesium ion, bicarbonate ion, and conductivity of Ganze spring are descending, while the content of fluoride ion is ascending. The abnormal variations of underground fluid in Lijiang area appeared in turns and were accompanied with minor earthquakes before Ludian MS6.5 earthquake, which indicates enhancing of regional stress and increasing of fluid activity.  相似文献   
73.
The effects of soil water content (SWC) on the formation of run‐off in grass swales draining into a storm sewer system were studied in two 30‐m test swales with trapezoidal cross sections. Swale 1 was built in a loamy fine‐sand soil, on a slope of 1.5%, and Swale 2 was built in a sandy loam soil, on a slope of 0.7%. In experimental runs, the swales were irrigated with 2 flow rates reproducing run‐off from block rainfalls with intensities approximately corresponding to 2‐month and 3‐year events. Run‐off experiments were conducted for initial SWC (SWCini) ranging from 0.18 to 0.43 m3/m3. For low SWCini, the run‐off volume was greatly reduced by up to 82%, but at high SWCini, the volume reduction was as low as 15%. The relative swale flow volume reductions decreased with increasing SWCini and, for the conditions studied, indicated a transition of the dominating swale functions from run‐off dissipation to conveyance. Run‐off flow peaks were reduced proportionally to the flow volume reductions, in the range from 4% to 55%. The swale outflow hydrograph lag times varied from 5 to 15 min, with the high values corresponding to low SWCini. Analysis of swale inflow/outflow hydrographs for high SWCini allowed estimations of the saturated hydraulic conductivities as 3.27 and 4.84 cm/hr in Swales 1 and 2, respectively. Such estimates differed from averages (N = 9) of double‐ring infiltrometer measurements (9.41 and 1.78 cm/hr). Irregularities in swale bottom slopes created bottom surface depression storage of 0.35 and 0.61 m3 for Swales 1 and 2, respectively, and functioned similarly as check berms contributing to run‐off attenuation. The experimental findings offer implications for drainage swale planning and design: (a) SWCini strongly affect swale functioning in run‐off dissipation and conveyance during the early phase of run‐off, which is particularly important for design storms and their antecedent moisture conditions, and (b) concerning the longevity of swale operation, Swale 1 remains fully functional even after almost 60 years of operation, as judged from its attractive appearance, good infiltration rates (3.27 cm/hr), and high flow capacity.  相似文献   
74.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   
75.
Based on digital seismic waveform data from Inner Mongolia Digital Seismic Network, the source spectrum parameters of 182 small and moderate earthquakes from January, 2009 to September, 2016 are derived, and the seismic moment M0 and moment magnitude MW of the earthquakes are calculated. The ML-MW relationship and the relationship between stress drop and magnitude are obtained using the linear regression method. It is clear that incorporating the moment magnitude into the seismic quick report catalog and the official earthquake catalog can enrich earthquake observation report content, thus providing better service for earthquake emergency and earthquake scientific research.  相似文献   
76.
Soil erosion in the Anthropocene: Research needs   总被引:6,自引:0,他引:6       下载免费PDF全文
Soil erosion is a geomorphological and, at the same time, a land degradation process that may cause environmental and property damage, loss of livelihoods and services as well as social and economic disruption. Erosion not only lowers soil quality on‐site, but causes also significant sediment‐related problems off‐site. Given the large number of research papers on this topic, one might therefore conclude that we know now almost everything about soil erosion and its control so that little new knowledge can be added. This conclusion can be refuted by pointing to some major research gaps. There is a need for more research attention to (1) improved understanding of both natural and anthropogenic soil erosion processes and their interactions, (2) scaling up soil erosion processes and rates in space and time, and (3) innovative techniques and strategies to prevent soil erosion or reduce erosion rates. This is illustrated with various case studies from around the world. If future research addresses these research gaps, we will (1) better understand processes and their interactions operating at a range of spatial and temporal scales, predict their rates as well as their on‐site and off‐site impacts, which is academically spoken rewarding but also crucial for better targeting erosion control measures, and (2) we will be in a better position to select the most appropriate and effective soil erosion control techniques and strategies which are highly necessary for a sustainable use of soils in the Anthropocene. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
77.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   
78.
Many researchers have studied the influence of rainfall patterns on soil water movement processes using rainfall simulation experiments. However, less attention has been paid to the influence under natural condition. In this paper, rainfall, soil water content (SWC), and soil temperature at 10‐, 20‐, 30‐, 40‐, and 50‐cm depths were simultaneously monitored at 1‐min intervals to measure the variation in SWC (SWCv) in response to rainfall under different rainfall patterns. First, we classified rainfall events into four patterns. During the study period, the main pattern was the advanced rainfall pattern (38% of all rainfall events), whereas the delayed, central, and uniform rainfall patterns had similar frequencies of about 20%. During natural rainfall, rainwater rapidly passed through the top soil layers (10–40 cm) and was accumulated in the bottom layer (50 cm). When a high rainfall pulse occurred, the water storage balance was disturbed, resulting in the drainage of initial soil water from the top layers into the deeper layers. Therefore, the critical function of the top layers and the bottom layers was infiltration and storage, respectively. The source of water stored in the bottom layer was not only rainfall but also the initial soil water in the upper soil layers. Changes in soil temperature at each soil depth were comonitored with SWCv to determine the movement characteristics of soil water under different rainfall patterns. Under the delayed rainfall pattern, preferential flows preferred to occur. Under the other rainfall patterns, matrix flow was the main form of soil water movement. Rainfall amount was a better indicator than rainfall intensity for SWCv in the bottom layer under the delayed rainfall pattern. These results provide insights into the responses of SWCv under different rainfall patterns in northern China.  相似文献   
79.
机载LiDAR在公路勘测方面的用途日益广泛。该文对直升机机载LiDAR在高速公路改扩建中的应用技术路线可行性进行了研究论证,从地面控制测量、点云数据获取、点云数据处理、成果应用等多个方面进行了阐述,通过分析LiDAR点云数据在5种不同地面控制点布设方案校正下的点云数据精度,论证了利用地面控制点对直升机机载LiDAR点云数据进行平面和高程校正的可行性。  相似文献   
80.
矿产资源开发导致了地下水失衡,地下水失衡又给矿产开发造成了极大的安全隐患,近年来,矿产资源开发与地下水环境保护之间的矛盾愈发凸显。通过对内蒙古鲁新井田典型的水文地质条件进行分析研究,分析采矿导致地下水失衡机理,深入剖析矿井开采充水条件及矿山开发对地下水环境的影响,合理提出了促进矿产开发与地下水保护相互协调的对策建议,为实现"采矿保水"协调统一提供了基础地质依据。为类似地区矿产开发过程中遵循自然规律,趋利避害,保障生产安全,保护地下水环境安全,实现资源绿色开发有较好的指导借鉴作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号